Current Energy Production and Consumption in Colorado

Colorado is a leader in the United States for energy production. The state ranks 7th in total energy production with 3,042 trillion BTUs produced in 2014. Of this energy production, a large majority of this production comes from oil, which the state produced 9,200 thousand barrels in November of 2016, and natural gas, which the state produced a total of 1,704,836 million cubic feet of in 2015. There is no nuclear energy produced in Colorado.

For total electricity generation, Colorado ranks 27th with 4,332 thousand megawatt-hours generated in November of 2016. By source, the large majority of this electricity is produced by coal at over 2,500 thousand megawatt hours generated in November of 2016, meaning coal provides Colorado with over half of its electricity production. This is followed by nonhydroelectric renewables, which produced 985 megawatt hours, and natural gas fired generation, which produced 722 megawatt hours.

Colorado’s electricity prices rank 25th highest in the country at an average retail price of $0.1216 per kilowatt-hour.

For consumption, Colorado is not as significant compared to other states as they are with production. Colorado ranks at 34th most energy consumed with 276 million BTUs consumed per capita. According to the US census, the Colorado population was roughly 5,349,648 in 2014. In total this puts Colorado consumption at a total of 1.476 quadrillion BTUs.

Breaking this consumption down by source, the most significant sources of consumption are natural gas and coal. In 2014, natural gas accounted for 497.2 trillion BTUs consumed. Coal accounted for 350.5 trillion BTUs consumed. Gasoline for motors, such as cars, trucks, etc., accounted for 250.3 trillion BTUs consumed. All renewables, biomass, hydroelectric, solar, wind, etc., put together account for 131.4 trillion BTUs. Nuclear energy accounts for none of the energy consumed in Colorado. By sector, the most significant sectors of consumption are industrial and transportation, which account for 29% and 28% respectively. Residential accounts for 24%, and commercial accounts for 19%.

Advertisements

History of Nuclear Energy in Colorado

Colorado’s history with nuclear energy is limited. Only one nuclear reactor has been built in the state, and it has since closed down. The plant was located east of I-25 near Plateville, and was named the Fort Saint Vrain Plant. It was built, owned, and operated, in a limited capacity, by the Public Service Company of Colorado, which now goes by the name Xcel Energy.

The Public Service Company acquired a license to build their high-temperature, gas-cooled reactor in 1973, and invested $240 million to build it. The plant began operating in 1979, and remained in operation for 10 years. Until it was transformed in 1989, it only operated, on average, at about 14.6% it capacity. In 1989, the Public Service Company transformed it into a natural gas electric generator for an additional $340 million, and spent $25 million to build a spent fuel storage. This fuel storage is still on site and is under the discretion of the United States Department of Energy.

Though there have been no other nuclear energy reactors in Colorado, the state has a significant history with uranium mining, which is a primary source of fuel for nuclear energy. The state’s history with uranium mining dates back to the early 1900s, when radium and vanadium experienced a huge production boom, which are accessory minerals to uranium.

During the 1940s due to the emergence of nuclear weapons, uranium was specifically targeted in Colorado in mass, which continued through the 90s due to a potential nuclear energy increase in the United States. One of the most significant producers of uranium in Colorado is the Uravan Mining District in Montrose County which contributed over 850 tons of Uranium to the Manhattan Project. From 1947 to 1970, the Uravan district mined and produced around 24 million pounds of uranium ore. Along with the Uravan Mining District, Colorado has hosted the Schwartzwalder Mine in Boulder, which produced 17 million pounds of uranium ore; the Thornburg mine, which produced 1.25 million pounds of uranium ore; the Cyprus Hill mine at Hansen Creek, which produced 25 million pounds of low grade uranium ore; and many other smaller operations.

According to the Colorado Energy Office, there has been no uranium mining in the state of Colorado since 2009. However, there are still 18 active uranium mining sites permitted, 12 on temporary cessation, and 1 pending approval in the state as of 2014. Though these active mines are permitted, none are actually operating.

Do We Know Enough About Energy Policy?

Energy policy can be really boring to most people. Energy policy combines a lot of technology and science issues with socio-economic and political issues, which creates a complex relationship. Within this complex relationship, there is a lot of published data, ongoing research, and political work-arounds.

Furthermore, its topics don’t grab young minds like drug policy or foreign policy. I suppose oil and gas is not as sexy to think about as the implications of joints and bombs. I get it. Well, I understand you, but I don’t agree with you.

However, something that became clear to me when I became more interested in energy policy is that almost no one seems to understand it even a little bit. It is like there is a complete black out of knowledge among Americans when it comes to our energy policy and interests. This surprised me because energy policy is so important. It effects everyone in the United States no matter what. If you are reading this blog, you are using energy to read this blog and to keep the servers up for this blog. We all have lights to turn on. We all have vehicles to ride in, whether it is our own car, a bus, or an Uber. Our lives, our planet, and our standards of living are all in wedlock with the energy policies of the nation.

Many friends of mine were fascinated with the Standing Rock protests, which how could you not be with the terrible brutality those protesters had to go through. Yet, very few of these friends had much of a coherent clue of what it was they wanted. They didn’t know how much pipeline had already been built in the United States (around 2.5 million miles), and why this was decided as an effective method to transport oil and gas. They didn’t know what alternatives there were to a pipeline, and they didn’t really know where this pipeline was being placed and who had ownership of this land. However, these to me were minor lapses of understanding. I mean besides industry leaders and top policy wonks, who could really give you the amount of pipeline built in the US right off the top of their head? (Me. THAT’S WHO!)

The most egregious misunderstanding is that many of them truly believed we could live in a world without fossil fuels right now. That we could simply pack up our oil, gas, and coal operations, and there would only be minor complications. This is laughably ignorant, and it is such a widespread idea among college students! Even students at South Dakota School of Mines and Technology, which is an engineering and science school! I don’t want to get too bogged down on this specific point and will devote a post on its own to this topic, but looking at the primary energy consumption data posted by the U.S. Energy Information Administration should help clear up this fable. Looking at the amount of energy produced in total from 2015 (97.22 quadrillion BTUs) compared to the amount of energy produced by renewables, which includes hydroelectric, geothermal, wind, solar, and biomass, in 2015 (9.450 quadrillion BTUs), it is clear that renewables have a lot of work to do before we can completely throw away fossil fuels. Getting rid of oil and gas outright would clearly cause widespread shortages, which means immense suffering among people that need electricity right now (think hospitals, 911 responders, etc).

And my anecdotal evidence of my friends is not the only evidence I have for people being grossly ignorant on energy policy issues. Americans have been historically really bad with energy policy.

In 1978, two thirds of Americans polled thought that a nuclear power plant accident could result in an explosion like Hiroshima. Furthermore, this was around the same time that James Bridges’ movie, The China Syndrome, came out, which claimed that during a nuclear power plant melt down, the fuel rods would be so hot that they could burrow all the way to China. People watched and, presumably, believed this movie.

In 1977, 52% of Americans polled by Roper answered that they thought solar power would overtake foreign oil imports in the next 5 years, and 16% thought that wind power could do it. Yet here we are, still importing foreign oil 40 years later.

In the 1970s, a majority of Americans thought that the gas lines and energy shortages were due to oil companies greedily hiding their oil somewhere out of the United States so that they could sell oil for higher prices! As if the instability in the Middle East (particularly Israel and Egypt), environmental regulations, and inflation played absolutely no roles in rising oil prices!

But perhaps, people are smarter now. All these examples are from the 1970s, and after 40 years, perhaps the public became wiser. I will delve into this question on future blog posts. I have to get you to come back to my blog somehow!

 

(The historical polls referenced in this post all came from Eric R.A.N. Smith’s book Energy, the Environment, and Public Policy, which can be bought on Amazon here)

Nuclear Energy: Why Does Colorado Have None?

With the first nuclear reactor, Tennessee Valley Authority’s Bar Unit 2, being connected to the grid on June 3rd since 1996, nuclear energy may be making a comeback. According to the Colorado Department of Natural Resources in 2006, the US produced more than 60% of the world’s nuclear energy production with 103 nuclear reactors, all of which were created before 1996. Compared with all other forms of energy sources (fossil fuels and renewables), nuclear energy sources makes up 20% of electricity generation in the United States.

With Colorado ranked 6th in natural gas production and 7th in total energy production, it would be expected that Colorado would be one of the leaders in nuclear energy production, especially with it being emission-free in production. However, Colorado falls completely flat on this expectation, as it currently does not have any nuclear power plants. Colorado is one of twenty states that does not have a nuclear power plant.

This hasn’t always been the case. Colorado use to have a nuclear power plant, named Fort St. Vrain, near Platteville, Colorado which was built by General Atomics Company and owned by the Public Service Company. The station began construction in 1968, and started generating electricity for the grid in 1976. The station was an early prototype of a high temperature, gas cooled reactor (HTGR). It was the first commercial reactor for electricity to use this gas cooling method, and one of four early HTGRs that used a thorium fuel cycle. All four that used this method have been shut down. According to Tony Kindelspire, writer for the Boulder Daily Camera, “problems plagued the plant from the start.” The plant was shut down in 1989, and has since been made into a natural gas plant.

So why doesn’t Colorado have a nuclear power plant now? In the United States, nuclear power is regulated by the Nuclear Regulatory Commission (NRC), but under the Agreement State Program, which Colorado is one of them, the NRC will relinquish portions of its regulatory jurisdictions to the state. However, a lot of regulatory power is still retained by the NRC. According to the National Conference of State Legislators, Colorado is not one of fifteen states that has regulations or laws against nuclear energy development or production. So it must not be regulatory barriers holding back Colorado’s nuclear potential.

This must mean it is just not economically feasible to create such energy in Colorado. Perhaps it is that the market currently does not favor this kind of production naturally, and energy producers should look elsewhere for energy production.

Nuclear power plants are actually pretty expensive to build. According to the Union of Concerned Scientists, costs rose from 2002 to 2008 from between $2-$4 billion to around $9 billion. However, the cost for the new Bar Unit 2 reactor was at $4.9 billion, and expects to add 1,150 megawatts to its grid. Compare this to the Rush Creek Wind Farm proposed to be built in eastern Colorado which costs $1 billion dollars, plus an additional $443 million accumulated from taxpayers from Production Tax Credits (PTC), and can only produce 600 megawatts if winds were blowing at exactly the correct speeds for 24 hours a day.

While the power plants might be quite expensive to build, the use of nuclear power plants to generate power is relatively cheap. According to the Nuclear Energy Institute, “in 2015, the average total generating cost for nuclear energy was $35.50 per megawatt-hour.” Furthermore, if the plant had more generating units per plant the price could get considerably lower. Compare this to wind energy, which has a generating cost around $40 per megawatt-hour, nuclear energy has cheaper generating costs.

Below is a graph provided by Energy Information Administration comparing the generating cost of different energy sources. Take note that the numbers represented are millions per kilowatt-hour, the hydro-electric category consists of both conventional hydroelectric and pumping storage, and the gas-turbine section is a conglomeration of gas turbines, internal combustion, wind, and photovoltaic. The cost is a total of fuel cost, operation cost, and maintenance cost. The full graph can be found here.

EIATotalGeneration cost

 

If it is the case that nuclear energy is simply too expensive to be a feasible method of producing electricity then so be it. However, it is evident that markets in Colorado are currently unfairly favoring wind and solar energy through subsidies and tax credits. Thus making it unclear if nuclear energy is truly unfavorable in the current market or is just being crowed out by government intrusions on the market. Perhaps skewed markets are the reason we do not see any nuclear power in Colorado. It is a question worth addressing.