Environmental Externalities of Nuclear

Environmental externalities are an important cost associated with energy, but are a much more dispersed cost. Most of the other economic factors discussed in this report have related directly to the costs of energy companies, unless paid for by subsidy. For example, energy companies will have to buy the fuel, account for the reliability of an energy source, and build the necessary capital development. However, the environmental costs of an energy source are something not only paid for by energy companies, but by everyone to some degree. We all have a vested interest in the environment in varying degrees of capacity, which means we all foot the bill in some kind of way for environmental externalities.

Each energy source has some kind of environmental externality which is either obviously seen or more hidden. However, comparing environmental effects can be difficult as the effects are generally in completely different metrics. For example, how many birds and bats would have to be killed by wind farms in order to equal the amount of pollutions given off by a coal electricity generator? How much radioactivity exposure is equivalent to the environmental damages caused by liquid natural gas spills? It is like comparing apples to oranges.

Being emission-free is a popular concept and buzzword among many people. Out of the primary sources of energy which have been examined in this paper, wind, solar, and nuclear are all emissions free during the production of electricity. Hydro and geothermal are both emission free as well.

However, while this may be the case, emissions are not the only form of environmental effects related to energy production. A lot of the environmental externalities faced by energy production are faced during the mining of fuels, instead of the generating of electricity. For natural gas, reserves must be drilled to at depth. For renewables, rare earth elements must be mined. For coal and nuclear, mining also needs to take place.

When it comes to the environmental effects of nuclear energy, almost all of it has to do with the release of radioactivity, which is a unique from other forms of energy, which most concerns deal with emissions, animal deaths, etc. According to the U.S. Energy Information Administration, there are two forms of radioactive waste associated with nuclear power: low level waste and high level waste. Low level waste is radioactivity associated with the mining of uranium which would include mill tailings and tools that came into contact with the uranium during mining. The current and common practice with dealing with low level waste is to seal it with barrier so that radon is unable to escape into the environment.

High level waste is more difficult, as this is the spent reactor fuel after electricity has been produced. High level waste is generally dealt with on a case by case basis. For Fort St. Vrain, the former nuclear power plant in Colorado, fuel is kept on site and is under the discretion of the Department of Energy. Thought there is currently no permanent repository for nuclear waste disposal in the United States.

The environmental effect, and in turn the health effects, of high levels of radiation should not be understated. After large amounts of radiation were introduced from Chernobyl, 42,000 people had to be evacuated within a 30 kilometer distance. Out of the 129 firefighters responding to the accident, 17 died of radiation sickness, and 13 others became seriously ill. Furthermore, residents experienced increased higher rates of thyroid cancer.

According to the EPA:

Ionizing radiation has sufficient energy to cause chemical changes in cells and damage them. Some cells may die or become abnormal, either temporarily or permanently. By damaging the genetic material (DNA) contained in the body’s cells, radiation can cause cancer. Fortunately, our bodies are extremely efficient at repairing cell damage. The extent of the damage to the cells depends upon the amount and duration of the exposure, as well as the organs exposed.

What is the Environment Worth?

This is a difficult question that doesn’t have an answer that we could possibly calculate. There are a lot of variables to consider. First off, we would need to define what the “environment” is and what it means to destroy an environment. However, I do not find this question worth delving into in huge depth here so we will define the “environment” with a simple connotative definition of the natural sphere. So in some kind of way, national parks, undeveloped land, and communities of non-human species are all how I define the environment in this context. Also, to destroy the environment means to alter it in any kind of way that would have not been able to have been done without human influence. So constructing a building or any kind of development would be considered destroying the environment. These are not set definitions, and what the “environment” is and isn’t and how you protect it is up for a lot of interpretations. However, in this case I am going with this simple definition of the environment.

Now that we have a definition for what the environment is, we can think about its value with better boundaries. We must keep in mind, though, that there is no blanket value to the environment. A natural desert area is part of the environment, but it is not as valuable as say a natural hot spring to us or to a larger diversity of species. So if we were to say the entire environment conglomerated together was worth 100 trillion dollars (just a made up value), it wouldn’t be right to apply this value equally among square feet. So if there were 10 trillion square feet of natural space conglomerated, you couldn’t simply say that each square foot was worth $10, as some pieces of land would probably be more valuable than others. Like said before a natural hot spring or aquifer is probably more valuable than a piece of desert land.

However, this implies that the environment has a finite value, though to many people I talk with it doesn’t seem they believe this. It seems like many people think the environment has an infinite value. Meaning that all human development is wrong, and that we should always favor environmental protection over development. No matter what, you should not drill oil and any oil drilling is inherently evil.

I hope that the people that hold these beliefs are not reading my blog… or any blogs for that matter. If they were, they would be committing a huge atrocity in their own world view (not mine). They would essentially be sacrificing something of infinite value for something of finite value. They would essentially be making everyone on this Earth immeasurably worse off, as they would be using energy of a finite and calculable value to read my blog. I unfortunately have to admit that my blog is probably incredibly low on the value scale and is most likely not even in the top 75% of most valuable things (if you could even measure what the MOST valuable things are). However, you the reader right now are forfeiting something of unquantifiable value for something that is relatively low value. How dare you!?

How dare you own anything or even develop a smidgeon if you think the environment is of infinite value? There is nothing else on Earth that has infinite value, not even a human life. You might look at that and be shocked, but my reasoning is simple. Imagine that a human life has infinite value and is in danger of some kind. The only way to save this life, for some weird and bizarre reason, is to kill of every bear, fox, and wolf in the world. Is it worth it? Is killing off every bear, fox, and wolf worth saving a single human life. If a human life has infinite value, the answer here is absolutely yes, as a bear, a wolf, or a fox does not have infinite value.

To relate this example back to the environment. If the environment has infinite value and is in danger because of humans, would it be worth it to kill off every human in order to protect this thing of infinite value?

I think it is clear to see here that the environment, just like everything else that has ever existed, does not have infinite value. That means it must have some kind of countable value. However just like the value of a human life, it would be difficult to ever know what this value actually is. We know the value exists, but we cannot put an exact number on it.

Though, I think it would be easier to learn the value of something in the smaller scale. I think you would be able to get a rough estimate of the utility and value of a marshland on a community through certain practices. Even this is impossible though if there is no kind of market price that can be set for these natural spaces.

I will expand on this idea in future blogs, but this is your food for thought. How could you determine the value of a natural space? And how could you determine if development is worth the degradation of an environment?

Nuclear Energy: But What about Rocky Flats Plant?

Nuclear energy can be a touchy subject to Coloradans. The only real commercial power plant to exist in the state was Fort St. Vrain, and then there is an even bigger and more widely known elephant in the room: Rocky Flats. If you don’t know what Rocky Flats is, it is a controversial nuclear weapons development facility near Golden, Colorado that was opened in 1952. When it was built, the information of what the facility was doing and the materials it was using was mostly secret due to national security interests because of our contentions with the Soviet Union. Transparency was certainly not a virtue of the Cold War Era. Due to our lack of knowledge in the nuclear area at this time, there were some precautions taken to eliminate contamination, but not all the proper precautions were taken. As a result the Environmental Protection Agency (EPA) and a few other governmental organizations had investigated the site and found huge breaches in safety for the surrounding public, the environment, and plant workers. Production halted in 1989, and cleanup began in 1992.

While the current contamination of surrounding areas, which include residential and agricultural areas, are not high enough to warrant cleanup by the EPA, the site is still highly monitored by the EPA and the Colorado Department of Public Health and Environment (CDPHE), as it is listed as a Superfund site by the EPA. Public outcry against the site was huge back in the early 90s, and there is still a lot of public contention today.

However, it is wrong to conflate a commercial nuclear plant with a nuclear weapons plant. Rocky Flats Plant was used to create nuclear weapon triggers called “pits”, while commercial nuclear plants create electricity. The Rocky Flats Plant used weapons grade plutonium, while nuclear power plants use regular enriched uranium. While plutonium was used at the Rocky Flats site, uranium is normally used for weapons as it is more readily found than plutonium, but the uranium used for electricity in commercial plants is still much different than the uranium used in weapons. To put this in perspective, weapons grade uranium has drastically higher levels of 235U (the isotope used to create both electricity and weapons) than the concentration of the enriched uranium (also the 235U isotope) used in electricity generation. Weapons grade uranium has over 90% 235U, while the enriched uranium used in electricity is 0.7% to 25%.

With this perspective, it is clear to see why weapon development has a much higher chance of contamination and a more severe effect from contamination than electricity generation. While there are possible health and environmental concerns with nuclear power, to use weapons development as evidence against it is groundless.