Current Energy Production and Consumption in Colorado

Colorado is a leader in the United States for energy production. The state ranks 7th in total energy production with 3,042 trillion BTUs produced in 2014. Of this energy production, a large majority of this production comes from oil, which the state produced 9,200 thousand barrels in November of 2016, and natural gas, which the state produced a total of 1,704,836 million cubic feet of in 2015. There is no nuclear energy produced in Colorado.

For total electricity generation, Colorado ranks 27th with 4,332 thousand megawatt-hours generated in November of 2016. By source, the large majority of this electricity is produced by coal at over 2,500 thousand megawatt hours generated in November of 2016, meaning coal provides Colorado with over half of its electricity production. This is followed by nonhydroelectric renewables, which produced 985 megawatt hours, and natural gas fired generation, which produced 722 megawatt hours.

Colorado’s electricity prices rank 25th highest in the country at an average retail price of $0.1216 per kilowatt-hour.

For consumption, Colorado is not as significant compared to other states as they are with production. Colorado ranks at 34th most energy consumed with 276 million BTUs consumed per capita. According to the US census, the Colorado population was roughly 5,349,648 in 2014. In total this puts Colorado consumption at a total of 1.476 quadrillion BTUs.

Breaking this consumption down by source, the most significant sources of consumption are natural gas and coal. In 2014, natural gas accounted for 497.2 trillion BTUs consumed. Coal accounted for 350.5 trillion BTUs consumed. Gasoline for motors, such as cars, trucks, etc., accounted for 250.3 trillion BTUs consumed. All renewables, biomass, hydroelectric, solar, wind, etc., put together account for 131.4 trillion BTUs. Nuclear energy accounts for none of the energy consumed in Colorado. By sector, the most significant sectors of consumption are industrial and transportation, which account for 29% and 28% respectively. Residential accounts for 24%, and commercial accounts for 19%.

History of Nuclear Energy in Colorado

Colorado’s history with nuclear energy is limited. Only one nuclear reactor has been built in the state, and it has since closed down. The plant was located east of I-25 near Plateville, and was named the Fort Saint Vrain Plant. It was built, owned, and operated, in a limited capacity, by the Public Service Company of Colorado, which now goes by the name Xcel Energy.

The Public Service Company acquired a license to build their high-temperature, gas-cooled reactor in 1973, and invested $240 million to build it. The plant began operating in 1979, and remained in operation for 10 years. Until it was transformed in 1989, it only operated, on average, at about 14.6% it capacity. In 1989, the Public Service Company transformed it into a natural gas electric generator for an additional $340 million, and spent $25 million to build a spent fuel storage. This fuel storage is still on site and is under the discretion of the United States Department of Energy.

Though there have been no other nuclear energy reactors in Colorado, the state has a significant history with uranium mining, which is a primary source of fuel for nuclear energy. The state’s history with uranium mining dates back to the early 1900s, when radium and vanadium experienced a huge production boom, which are accessory minerals to uranium.

During the 1940s due to the emergence of nuclear weapons, uranium was specifically targeted in Colorado in mass, which continued through the 90s due to a potential nuclear energy increase in the United States. One of the most significant producers of uranium in Colorado is the Uravan Mining District in Montrose County which contributed over 850 tons of Uranium to the Manhattan Project. From 1947 to 1970, the Uravan district mined and produced around 24 million pounds of uranium ore. Along with the Uravan Mining District, Colorado has hosted the Schwartzwalder Mine in Boulder, which produced 17 million pounds of uranium ore; the Thornburg mine, which produced 1.25 million pounds of uranium ore; the Cyprus Hill mine at Hansen Creek, which produced 25 million pounds of low grade uranium ore; and many other smaller operations.

According to the Colorado Energy Office, there has been no uranium mining in the state of Colorado since 2009. However, there are still 18 active uranium mining sites permitted, 12 on temporary cessation, and 1 pending approval in the state as of 2014. Though these active mines are permitted, none are actually operating.

Nuclear Energy: Why Does Colorado Have None?

With the first nuclear reactor, Tennessee Valley Authority’s Bar Unit 2, being connected to the grid on June 3rd since 1996, nuclear energy may be making a comeback. According to the Colorado Department of Natural Resources in 2006, the US produced more than 60% of the world’s nuclear energy production with 103 nuclear reactors, all of which were created before 1996. Compared with all other forms of energy sources (fossil fuels and renewables), nuclear energy sources makes up 20% of electricity generation in the United States.

With Colorado ranked 6th in natural gas production and 7th in total energy production, it would be expected that Colorado would be one of the leaders in nuclear energy production, especially with it being emission-free in production. However, Colorado falls completely flat on this expectation, as it currently does not have any nuclear power plants. Colorado is one of twenty states that does not have a nuclear power plant.

This hasn’t always been the case. Colorado use to have a nuclear power plant, named Fort St. Vrain, near Platteville, Colorado which was built by General Atomics Company and owned by the Public Service Company. The station began construction in 1968, and started generating electricity for the grid in 1976. The station was an early prototype of a high temperature, gas cooled reactor (HTGR). It was the first commercial reactor for electricity to use this gas cooling method, and one of four early HTGRs that used a thorium fuel cycle. All four that used this method have been shut down. According to Tony Kindelspire, writer for the Boulder Daily Camera, “problems plagued the plant from the start.” The plant was shut down in 1989, and has since been made into a natural gas plant.

So why doesn’t Colorado have a nuclear power plant now? In the United States, nuclear power is regulated by the Nuclear Regulatory Commission (NRC), but under the Agreement State Program, which Colorado is one of them, the NRC will relinquish portions of its regulatory jurisdictions to the state. However, a lot of regulatory power is still retained by the NRC. According to the National Conference of State Legislators, Colorado is not one of fifteen states that has regulations or laws against nuclear energy development or production. So it must not be regulatory barriers holding back Colorado’s nuclear potential.

This must mean it is just not economically feasible to create such energy in Colorado. Perhaps it is that the market currently does not favor this kind of production naturally, and energy producers should look elsewhere for energy production.

Nuclear power plants are actually pretty expensive to build. According to the Union of Concerned Scientists, costs rose from 2002 to 2008 from between $2-$4 billion to around $9 billion. However, the cost for the new Bar Unit 2 reactor was at $4.9 billion, and expects to add 1,150 megawatts to its grid. Compare this to the Rush Creek Wind Farm proposed to be built in eastern Colorado which costs $1 billion dollars, plus an additional $443 million accumulated from taxpayers from Production Tax Credits (PTC), and can only produce 600 megawatts if winds were blowing at exactly the correct speeds for 24 hours a day.

While the power plants might be quite expensive to build, the use of nuclear power plants to generate power is relatively cheap. According to the Nuclear Energy Institute, “in 2015, the average total generating cost for nuclear energy was $35.50 per megawatt-hour.” Furthermore, if the plant had more generating units per plant the price could get considerably lower. Compare this to wind energy, which has a generating cost around $40 per megawatt-hour, nuclear energy has cheaper generating costs.

Below is a graph provided by Energy Information Administration comparing the generating cost of different energy sources. Take note that the numbers represented are millions per kilowatt-hour, the hydro-electric category consists of both conventional hydroelectric and pumping storage, and the gas-turbine section is a conglomeration of gas turbines, internal combustion, wind, and photovoltaic. The cost is a total of fuel cost, operation cost, and maintenance cost. The full graph can be found here.

EIATotalGeneration cost


If it is the case that nuclear energy is simply too expensive to be a feasible method of producing electricity then so be it. However, it is evident that markets in Colorado are currently unfairly favoring wind and solar energy through subsidies and tax credits. Thus making it unclear if nuclear energy is truly unfavorable in the current market or is just being crowed out by government intrusions on the market. Perhaps skewed markets are the reason we do not see any nuclear power in Colorado. It is a question worth addressing.

Nuclear Energy: But What about Rocky Flats Plant?

Nuclear energy can be a touchy subject to Coloradans. The only real commercial power plant to exist in the state was Fort St. Vrain, and then there is an even bigger and more widely known elephant in the room: Rocky Flats. If you don’t know what Rocky Flats is, it is a controversial nuclear weapons development facility near Golden, Colorado that was opened in 1952. When it was built, the information of what the facility was doing and the materials it was using was mostly secret due to national security interests because of our contentions with the Soviet Union. Transparency was certainly not a virtue of the Cold War Era. Due to our lack of knowledge in the nuclear area at this time, there were some precautions taken to eliminate contamination, but not all the proper precautions were taken. As a result the Environmental Protection Agency (EPA) and a few other governmental organizations had investigated the site and found huge breaches in safety for the surrounding public, the environment, and plant workers. Production halted in 1989, and cleanup began in 1992.

While the current contamination of surrounding areas, which include residential and agricultural areas, are not high enough to warrant cleanup by the EPA, the site is still highly monitored by the EPA and the Colorado Department of Public Health and Environment (CDPHE), as it is listed as a Superfund site by the EPA. Public outcry against the site was huge back in the early 90s, and there is still a lot of public contention today.

However, it is wrong to conflate a commercial nuclear plant with a nuclear weapons plant. Rocky Flats Plant was used to create nuclear weapon triggers called “pits”, while commercial nuclear plants create electricity. The Rocky Flats Plant used weapons grade plutonium, while nuclear power plants use regular enriched uranium. While plutonium was used at the Rocky Flats site, uranium is normally used for weapons as it is more readily found than plutonium, but the uranium used for electricity in commercial plants is still much different than the uranium used in weapons. To put this in perspective, weapons grade uranium has drastically higher levels of 235U (the isotope used to create both electricity and weapons) than the concentration of the enriched uranium (also the 235U isotope) used in electricity generation. Weapons grade uranium has over 90% 235U, while the enriched uranium used in electricity is 0.7% to 25%.

With this perspective, it is clear to see why weapon development has a much higher chance of contamination and a more severe effect from contamination than electricity generation. While there are possible health and environmental concerns with nuclear power, to use weapons development as evidence against it is groundless.

Nuclear Energy: Uranium Mining in Colorado

Colorado has a long and controversial history with uranium mining. While uranium did not get into extremely high demand until the early 1950s due to the Cold War and the development of nuclear weapons, Colorado began similar mining with radium in the 1910s and vanadium in the 1930s, which were popular for more commercial uses like paints and clays. Both radium and vanadium are indicator minerals for uranium, hence why their mining and extraction are so interrelated.

The first uraninite, also known as pitchblende, found in the United States was found near Central City, Colorado. While most the uranium used for nuclear weapons, specifically the Manhattan Project, came from Congo and Canada, Colorado, through the Uravan mining district, produced about 850 tons of uranium ore for weapons testing. Prospecting and mining continued to expand after World War II as the largest uranium deposit to be found in Colorado was discovered in the late 1940s. Due to recession, the scaling down of the Cold War, and uranium being released from weapon stockpiles, uranium mining decreased dramatically in the 1980s due to a large decrease in price. During the boom of uranium mining in Colorado (1948-1978), it is estimated that Uravan belt had over 1,200 mines and mined 63 million pounds of uranium.

Currently, Colorado ranks third for the most known uranium reserves in the United States, just behind Wyoming and New Mexico. Since 2009, there has been no major uranium mining in the state of Colorado, and there are currently no active mines. However, there are 31 permitted projects in Colorado.

While uranium mining has the potential to be a very lucrative industry in the future, especially if nuclear energy becomes more popular, it does come with externalities to the environment and public health. When it comes to describing nuclear waste, it is generally described in two tiers: low-level waste and high level waste, which refer to their level of radioactivity. Uranium mining, which produce mill tailings, is the source of low-level waste, while high-level waste refers mostly to used reactor fuel after the uranium has been used to generate electricity. According to the Energy Information Administration, “by volume, most of the waste related to the nuclear power industry has a relatively low-level of radioactivity”, meaning most of the waste comes from the extraction of uranium.

Mill tailings from uranium mining, which has the presence of its indicator mineral radium, will break down into radon, which is a radioactive gas that can collect in the atmosphere if special precautions are not taken. Furthermore environmental contamination can occur from the tools used if special precautions also are not taken.

While it is important to keep in mind the externalities of uranium mining when discussing nuclear energy, we must remember that these kinds of trade-offs exist almost anywhere in energy production. Wind and solar energy, as well as hybrid and electric cars, fluorescent lightbulbs, and Ipods, have very similar externalities to nuclear power as they use rare earth elements like lanthanum, cerium, scandium, terbium, and several others. When comparing the externalities of uranium mining to the externalities of other rare earth element mining, the risks are almost identical.