History of Nuclear Energy in Colorado

Colorado’s history with nuclear energy is limited. Only one nuclear reactor has been built in the state, and it has since closed down. The plant was located east of I-25 near Plateville, and was named the Fort Saint Vrain Plant. It was built, owned, and operated, in a limited capacity, by the Public Service Company of Colorado, which now goes by the name Xcel Energy.

The Public Service Company acquired a license to build their high-temperature, gas-cooled reactor in 1973, and invested $240 million to build it. The plant began operating in 1979, and remained in operation for 10 years. Until it was transformed in 1989, it only operated, on average, at about 14.6% it capacity. In 1989, the Public Service Company transformed it into a natural gas electric generator for an additional $340 million, and spent $25 million to build a spent fuel storage. This fuel storage is still on site and is under the discretion of the United States Department of Energy.

Though there have been no other nuclear energy reactors in Colorado, the state has a significant history with uranium mining, which is a primary source of fuel for nuclear energy. The state’s history with uranium mining dates back to the early 1900s, when radium and vanadium experienced a huge production boom, which are accessory minerals to uranium.

During the 1940s due to the emergence of nuclear weapons, uranium was specifically targeted in Colorado in mass, which continued through the 90s due to a potential nuclear energy increase in the United States. One of the most significant producers of uranium in Colorado is the Uravan Mining District in Montrose County which contributed over 850 tons of Uranium to the Manhattan Project. From 1947 to 1970, the Uravan district mined and produced around 24 million pounds of uranium ore. Along with the Uravan Mining District, Colorado has hosted the Schwartzwalder Mine in Boulder, which produced 17 million pounds of uranium ore; the Thornburg mine, which produced 1.25 million pounds of uranium ore; the Cyprus Hill mine at Hansen Creek, which produced 25 million pounds of low grade uranium ore; and many other smaller operations.

According to the Colorado Energy Office, there has been no uranium mining in the state of Colorado since 2009. However, there are still 18 active uranium mining sites permitted, 12 on temporary cessation, and 1 pending approval in the state as of 2014. Though these active mines are permitted, none are actually operating.

Advertisements

Dungeons and Dragons and Central Planning

Table top games like Dungeons and Dragons, Pathfinder, and Traveler are all great ways to stimulate your imagination, bond with friends, and practice your problem solving skills whether you are a game master or a player. The first time I was a player I was surprised by the freedom given to you in the game.

If you are unfamiliar with these kinds of games, just imagine a videogame like Skyrim or World of Warcraft, except there are no limits. In videogames you can run into plastic walls, can’t talk to certain non-player characters, can’t use certain items, etc, but in a tabletop game it is all in your imagination. You tell friends what you are doing, whatever that may be, and the game master describes how the environment or non-player characters react to those actions while other players decide for themselves how they will react to those same actions. As someone who has played role playing videogames, like Guild Wars, and strategy games, like Age of Empires, for my entire life, I was honestly delighted by the liberty you had as a player in a table top game. Of course the only reason this is possible is because a human can make cleverer responses to actions than a program can, especially when dealing in the worlds of fantasy and science fiction.

However, when I prepared for my first time being a game master I had a ‘conflict’ with some of my political ideas. Was I being a central planner for this world to the players? I was directing the “economy” around them and how all social interactions occurred with the players. However, I think you go further than being just a central planner when you are a game master. You aren’t just the mechanics of how players get money and how much any item costs, but you are also the trees, the bees, the deer, and the beer. You are literally all the universe that isn’t directly the players themselves. In this way, you are the god of this imagined universe (but the god of gods since there are gods that exist within most of these universes).

At this point, it should be noted that there is a significant difference between being a game master and being a central planner, which make it significantly easier to be a game master. When being a game master, you don’t have to deal with scarcity of any kind. It is an imagined world. There is no lack of cows, food, sand, water, swords, monsters, or anything else that might appear. I only have to think about it, say it, and it exists. The only thing I have to keep in mind is not creating an extreme rate of inflation for gold or experience among the players or else the numbers become unkind to work with and confusing to the players.

Without there being scarcity to worry about as a game master, directing this world as a planner must be an easy task. It is like writing a story or a book. Just imagine something entertaining or exciting and we will have smooth sailing. Except… Not really. Actually any interesting game for the players is the opposite of smooth sailing. It is frustrating, confusing, and everything is unexpected even as a game master, and it is all because of those pesky human players. They are too volatile of a variable. As players sit at the table, they create a narrative for their characters that have their own desires, motivations, fears, and beliefs. How am I suppose to plan around that?

I planned an entire quest going down the path to the burning Castle of Prince Ralley the Mighty, but then the elf rogue played by my friend decides they feel something calling to them in the forest and runs off the path into a mysterious forest I had only considered for 5 minutes before the session. What if the other players’ characters don’t want to follow him into the forest? What if one decides to attack the other? What if none of them are interested in the burning castle? Human players are a pesky variable that you can never predict.

So in this way, even when I don’t have to deal with scarcity in this world, I still struggle to plan for the players because I am not the players. I don’t have all the knowledge, motivations, and thoughts as the players, so I will never be able to perfectly plan for them. And sometimes, that lack of planning can show for a really crappy sessions, but most of the time I would like to think I am clever enough to rebound.

Regardless, I think tabletop games teach a valuable lesson on humans as a chaotic variable. The main take away for me being that humans are too complicated to plan around. Ludwig von Mises describes this problem to a great extent in his treatise Human Action, but to put it down to small excerpt from the piece:

“Since nobody is in a position to substitute his own value judgments for those of the acting individual, it is vain to pass judgment on other people’s aims and volitions. No man is qualified to declare what would make another man happier or less discontented.” –Ludwig von Mises, Human Action: A Treatise on Economics

The Importance of Energy

Energy is vital to the prosperity of communities and society as a whole. There were 253 million registered passenger cars and trucks on the roads in the United States in 2014. In 2016, there were estimated to be over 207 million smartphone users in the United States, which is estimated to above 257 million by the year 2020. In 2009, there were over 100 million air conditioners in US homes. All these commodities take energy, and in the case of air conditioners and cars, a significant amount of energy. In 2013 the United States consumed 12,988 kWh per person. According to the US Census, in 2013 there were about 317,200,000 people living in the United States. This means the United States consumed about 4,119,793,600 MWh of electricity in 2013 alone.

With these numbers in mind, it would not be a stretch to say that the United States’ standard of living rests heavily on its access to energy. Dr. Charles Hall, a researcher in systems ecology and biophysical economics, goes as far as saying that the “American Dream” was created due to the United States’ access to energy, most notably pointing to the use of the spindletop, an oil drilling tool, in 1901 as one of the most important economic events in the United States.

When it comes down to it, our access to energy is inseparably tied to our energy policy. This highlights the importance of sound energy policy in the United States, as well as the state of Colorado. In order to sustain a high standard of living, energy policy must be conducive to greater and greater access to energy.

What is the Environment Worth?

This is a difficult question that doesn’t have an answer that we could possibly calculate. There are a lot of variables to consider. First off, we would need to define what the “environment” is and what it means to destroy an environment. However, I do not find this question worth delving into in huge depth here so we will define the “environment” with a simple connotative definition of the natural sphere. So in some kind of way, national parks, undeveloped land, and communities of non-human species are all how I define the environment in this context. Also, to destroy the environment means to alter it in any kind of way that would have not been able to have been done without human influence. So constructing a building or any kind of development would be considered destroying the environment. These are not set definitions, and what the “environment” is and isn’t and how you protect it is up for a lot of interpretations. However, in this case I am going with this simple definition of the environment.

Now that we have a definition for what the environment is, we can think about its value with better boundaries. We must keep in mind, though, that there is no blanket value to the environment. A natural desert area is part of the environment, but it is not as valuable as say a natural hot spring to us or to a larger diversity of species. So if we were to say the entire environment conglomerated together was worth 100 trillion dollars (just a made up value), it wouldn’t be right to apply this value equally among square feet. So if there were 10 trillion square feet of natural space conglomerated, you couldn’t simply say that each square foot was worth $10, as some pieces of land would probably be more valuable than others. Like said before a natural hot spring or aquifer is probably more valuable than a piece of desert land.

However, this implies that the environment has a finite value, though to many people I talk with it doesn’t seem they believe this. It seems like many people think the environment has an infinite value. Meaning that all human development is wrong, and that we should always favor environmental protection over development. No matter what, you should not drill oil and any oil drilling is inherently evil.

I hope that the people that hold these beliefs are not reading my blog… or any blogs for that matter. If they were, they would be committing a huge atrocity in their own world view (not mine). They would essentially be sacrificing something of infinite value for something of finite value. They would essentially be making everyone on this Earth immeasurably worse off, as they would be using energy of a finite and calculable value to read my blog. I unfortunately have to admit that my blog is probably incredibly low on the value scale and is most likely not even in the top 75% of most valuable things (if you could even measure what the MOST valuable things are). However, you the reader right now are forfeiting something of unquantifiable value for something that is relatively low value. How dare you!?

How dare you own anything or even develop a smidgeon if you think the environment is of infinite value? There is nothing else on Earth that has infinite value, not even a human life. You might look at that and be shocked, but my reasoning is simple. Imagine that a human life has infinite value and is in danger of some kind. The only way to save this life, for some weird and bizarre reason, is to kill of every bear, fox, and wolf in the world. Is it worth it? Is killing off every bear, fox, and wolf worth saving a single human life. If a human life has infinite value, the answer here is absolutely yes, as a bear, a wolf, or a fox does not have infinite value.

To relate this example back to the environment. If the environment has infinite value and is in danger because of humans, would it be worth it to kill off every human in order to protect this thing of infinite value?

I think it is clear to see here that the environment, just like everything else that has ever existed, does not have infinite value. That means it must have some kind of countable value. However just like the value of a human life, it would be difficult to ever know what this value actually is. We know the value exists, but we cannot put an exact number on it.

Though, I think it would be easier to learn the value of something in the smaller scale. I think you would be able to get a rough estimate of the utility and value of a marshland on a community through certain practices. Even this is impossible though if there is no kind of market price that can be set for these natural spaces.

I will expand on this idea in future blogs, but this is your food for thought. How could you determine the value of a natural space? And how could you determine if development is worth the degradation of an environment?

Middle Earth Time: Comparing the Age of the Earth to the Lord of the Rings Movies

What if we were to compare Earth’s historical time to Middle Earth’s movie runtime? If we were to compare these two and put them side by side, at what point in the movie would you be during the KPG extinction (the event that killed off most of the dinosaurs)? Think of this like Carl Sagan’s cosmic calendar. Except instead of a calendar, it is all the Lord of the Rings movies, and instead of the history of the whole universe, it is just the history of the Earth.

So to start out, we need to know how long both are in order to create a conversion rate. The Earth has been around for 4.6 billion years (4,600,000,000 years). If we were to put all the movies together and cut out all the end credits, the movies run for 10 hours, 26 minutes, and 59 seconds. In seconds, it runs for 37,619 seconds.

(Note: I am using the theatrical version for Fellowship, but extended versions for Two Towers and Return of the King because it is all I could find)

With these numbers, for every second that passes in the movies, 122,278.6355 years pass in Earth time. For every year that passes on Earth time, 8.178043×10-6 seconds pass in the movies. Another way to write this is 0.000008178043 seconds pass.

(The links will take you to Youtube clips of the specific scene I am talking about)

As the Earth has finished forming, our movie begins. The screen is black and about to show the New Line Cinema logo. For several hundred million years the Earth is being bombarded by a shower of meteors. In movie time, the meteor bombardment lasts for about 1 hour and 20 minutes.

As the bombardment stops, Elrond is in a private meeting at his home with Gandalf, and says “men? Men are weak.” Time continues on Earth until we get to the formation of the oldest sedimentary rocks we have ever found (3.9 billion years old). At this time in the movie, Bilbo is grabbing Frodo’s hand as he is saddened that the Ring has tempted him again (1 hour and 35 minutes into Fellowship of the Ring). This is right after Bilbo makes the scary face at Frodo.

Fast forward in Earth time to the first eukaryotic cells, and in the movies we are already at the Battle of Helm’s Deep in the Two Towers. The orcs are firing a ballista at the wall (this is shortly after Gimli asks Aragorn to toss him during the battle).

Fast forward even more to the first mammals and dinosaurs on earth, and we are already well over 3 and a half hours of Return of the King! Frodo and Sam are already inside of Mount Doom, and Golem is attacking Frodo as he is invisible and is about to bite his finger off.

By the time of the KPG extinction (when most of the dinosaurs go extinct), the Ring is already destroyed, the hobbits have already gone home, and Frodo is finishing Bilbo’s book with the words “Bilbo’s story is now over. There would be no more journeys for him.”

The first hominids (our earliest ancestors) come in on the scene of Earth time, but Sam is just closing his gate with his family behind him. There is only seconds left in the film. As “The End” enters the screen in movie time, homo sapiens make their first appearance, the earliest know cave art is found, Julius Caesar was killed, China built the Great Wall, World War 2 was fought, and everyone you and I have ever know were born. The screen fades to complete black, and we are now back at current Earth Time.

Here is a graph of all the time stamps and a direct comparison between Earth time and the movie times:

lotr-time-graph

What if we got rid of fossil fuels immediately?

Just as a hypothetical, what if we decided to pack up all oil, gas, and coal developments and go home? What if we decided that we have had enough of fossil fuel pollution, and decided to outlaw the practice of drilling and mining fossil fuels, as well as selling it. I don’t mean a slow transition, but an immediate shift. The purpose of this is to put into perspective what our energy needs and energy market looks like today.

Let’s start with how much energy is consumed and where it comes from. Below is a table created by the U.S. Energy Information Administration showing by energy source how much is being consumed. The units are represented in quadrillion British Thermal Units (BTU).

primary-energy-consumption

In case you didn’t know, a BTU is a lot like a calorie, in that is how much energy is needed to raise a specific amount of water a specific temperature. In the case of BTUs, one BTU is the amount of energy needed to raise one pound of water by one degree Fahrenheit. The average household uses about 263.5 million BTUs a year. Compare this number to the amount of BTUs consumed by the United States in a year (specifically 2015), which is 97.344 quadrillion BTUs. To show you the scope of these numbers, I want to write them out fully for you.

The average household consumes 263,500,000 BTUs a year.

The United States in 2015 consumed 97,344,000,000,000,000 BTUs.

This is clearly massive, but how much of it is from fossil fuels? According to the EIA, 79.330 quadrillion BTUs of energy consumed in the United States comes from fossil fuels (coal, natural gas, and petroleum). This means about 81.5% of our energy consumption in the United States comes from fossil fuels! About 8.6% comes from nuclear energy. 0.44% comes from solar power, and 1.8% comes from wind power. With all the renewables together (wind, solar, hydroelectric, geothermal, and biomass), the number is about 9.7% of our energy consumption.

These numbers should be enlightening. It means that today we are still reliant on fossil fuels, and based on the shear amount of energy we get from it, it will be difficult to shift. However, if it were to be an irresponsible and immediate shift, we could assume that we would be 81.5% the energy we demand! This would be gas lines like in the 1970s, and huge electricity shortages across the nations.

To us that live relatively comfortable lives, blackouts don’t sound like big deal. We have dealt with blackouts in snowstorms or ferocious lightning storms. But think of the hospitals need that power to save lives. Think of the 911 responders that now will be without communication. Think of the families that need to refrigerate life-saving medication. Think of all the food that will go bad. Think of the traffic lights in busy cities that will no longer work. Think of the people that live in dire cold environments that will struggle to keep themselves warm. Think of the people that live in dire hot and humid environments that would no longer be able to keep themselves cool. These are all life-threatening situations, and as of right now, oil, gas, and coal are the reliable and cheap energy sources that make it so these things do not happen.

If we were to hypothetically remove fossil fuels altogether, we would fix these problems eventually, right? We would probably be hard at work constructing nuclear reactors, hydroelectric dams, and digging for geothermal energy, but all these endeavors require a lot of energy to do! It takes a lot of energy to construct massive concrete towers for nuclear reactors. It takes a lot of energy to build massive concrete dams or even to get the materials to the rivers in the first place. All of this development for these alternative energy resources would require a lot of energy we wouldn’t have because we have removed fossil fuels entirely. How would we have enough energy to fix this problem in the time we needed it? People would undergo incredible suffering and death while waiting for this solution to come, if it ever could come in time.

To give you a concrete example of this, Southern Australia tried kicking out oil and gas recently. They decided to become reliant on wind energy, unfortunately for them wind is not an incredibly reliant form of energy. The wind doesn’t always blow. Because of this prices would spike up to $14,000 a megawatt hour in Southern Australia, and have averaged around $360 a megawatt hour! Compare this price to other areas in Australia that pay around $90 a megawatt hour. Supply in energy dropped in Southern Australia and prices skyrocketed. Since then, Southern Australia has begged natural gas plants to resume operation.

Getting rid of fossil fuels in one swoop would be terrifying! But so many young people today truly believe that we should immediately introduce legislation in states to get rid of oil and gas. Luckily, I don’t believe this is a widespread belief, but one that I have come across enough to feel like I should write this post. Every time I come across this idea, I can’t help but face palm harder and harder.

And to be clear, I am not saying we couldn’t ever live in a prosperous world without fossil fuels. I am simply saying that is not our world today, and it will not be our world for many days to come. We demand a huge amount of energy, and right now, our current renewable energy sources are not appearing to be the panacea we need.

Do We Know Enough About Energy Policy?

Energy policy can be really boring to most people. Energy policy combines a lot of technology and science issues with socio-economic and political issues, which creates a complex relationship. Within this complex relationship, there is a lot of published data, ongoing research, and political work-arounds.

Furthermore, its topics don’t grab young minds like drug policy or foreign policy. I suppose oil and gas is not as sexy to think about as the implications of joints and bombs. I get it. Well, I understand you, but I don’t agree with you.

However, something that became clear to me when I became more interested in energy policy is that almost no one seems to understand it even a little bit. It is like there is a complete black out of knowledge among Americans when it comes to our energy policy and interests. This surprised me because energy policy is so important. It effects everyone in the United States no matter what. If you are reading this blog, you are using energy to read this blog and to keep the servers up for this blog. We all have lights to turn on. We all have vehicles to ride in, whether it is our own car, a bus, or an Uber. Our lives, our planet, and our standards of living are all in wedlock with the energy policies of the nation.

Many friends of mine were fascinated with the Standing Rock protests, which how could you not be with the terrible brutality those protesters had to go through. Yet, very few of these friends had much of a coherent clue of what it was they wanted. They didn’t know how much pipeline had already been built in the United States (around 2.5 million miles), and why this was decided as an effective method to transport oil and gas. They didn’t know what alternatives there were to a pipeline, and they didn’t really know where this pipeline was being placed and who had ownership of this land. However, these to me were minor lapses of understanding. I mean besides industry leaders and top policy wonks, who could really give you the amount of pipeline built in the US right off the top of their head? (Me. THAT’S WHO!)

The most egregious misunderstanding is that many of them truly believed we could live in a world without fossil fuels right now. That we could simply pack up our oil, gas, and coal operations, and there would only be minor complications. This is laughably ignorant, and it is such a widespread idea among college students! Even students at South Dakota School of Mines and Technology, which is an engineering and science school! I don’t want to get too bogged down on this specific point and will devote a post on its own to this topic, but looking at the primary energy consumption data posted by the U.S. Energy Information Administration should help clear up this fable. Looking at the amount of energy produced in total from 2015 (97.22 quadrillion BTUs) compared to the amount of energy produced by renewables, which includes hydroelectric, geothermal, wind, solar, and biomass, in 2015 (9.450 quadrillion BTUs), it is clear that renewables have a lot of work to do before we can completely throw away fossil fuels. Getting rid of oil and gas outright would clearly cause widespread shortages, which means immense suffering among people that need electricity right now (think hospitals, 911 responders, etc).

And my anecdotal evidence of my friends is not the only evidence I have for people being grossly ignorant on energy policy issues. Americans have been historically really bad with energy policy.

In 1978, two thirds of Americans polled thought that a nuclear power plant accident could result in an explosion like Hiroshima. Furthermore, this was around the same time that James Bridges’ movie, The China Syndrome, came out, which claimed that during a nuclear power plant melt down, the fuel rods would be so hot that they could burrow all the way to China. People watched and, presumably, believed this movie.

In 1977, 52% of Americans polled by Roper answered that they thought solar power would overtake foreign oil imports in the next 5 years, and 16% thought that wind power could do it. Yet here we are, still importing foreign oil 40 years later.

In the 1970s, a majority of Americans thought that the gas lines and energy shortages were due to oil companies greedily hiding their oil somewhere out of the United States so that they could sell oil for higher prices! As if the instability in the Middle East (particularly Israel and Egypt), environmental regulations, and inflation played absolutely no roles in rising oil prices!

But perhaps, people are smarter now. All these examples are from the 1970s, and after 40 years, perhaps the public became wiser. I will delve into this question on future blog posts. I have to get you to come back to my blog somehow!

 

(The historical polls referenced in this post all came from Eric R.A.N. Smith’s book Energy, the Environment, and Public Policy, which can be bought on Amazon here)